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Abstract: Understanding how information spreads throughout a population can help publichealth
officialsimprove how they communicate with the publicin emergency situations. Inthis project, |

implement an agent-based information diffusion model inspired by the Bass model. | compare my
discrete-time simulation to a traditional differential-equation conceptualization of the Bass model.
Finally, | test my model by seeing how well it predicts the real-life spread of information through a
Twitter network.



1. INTRODUCTION

Motivation. Inthe weeksfollowingthe events of 9/11, seven letters containing dangerous strains of
Bacillus anthracis were mailed to senators and news agencies. Although the FBI neverdetermineda
senderor motive, the attacks informed the country to the possibility of bioterrorism and spurred public
health agenciesto planoutresponsestosimilar, larger-scalescenarios. Anthraxis not contagious, but
its dynamics require afast dissemination of targeted publichealth information because newly infected
individuals have afarbetter prognosis whenthey are treated quickly. Toincrease effectivenessofa
targeted publichealth message, its broadcasters must understand how information spreads through a
population.

Traditional models of information diffusion. The goal of an information diffusion model is to describe
how a piece of information spreads through a given population overtime. We are interestedinthe
successive increasesin the fraction of people who are aware of the information. Traditionally,
information diffusion has been modeled with differential equations that describe the dynamics of a
global system --in this case, an entire population. Adisadvantage of such modelsisthattheydescribe
only aggregate diffusion patterns, not takinginto accountthatindividuals behave in complex ways and
that they function within social networks.

A different approach: agent-based models. Recently, bottom-up modeling in the form of agent-based
simulation has gained attention. Agent-based models capture how patterns of behavioratthe macro
level emergeas the result of the interactions of individuals, or agents, atthe microlevel. Agent-based
models are discrete-time simulations of the interactions in an ensemble of autonomous agents. Ateach
iteration, each agentevaluates its situation and makes decisions according to a ruleset.

In my project, | create an agent-based information diffusion model. | compare my discrete-time
simulation to an analytical differential equation model. Finally, | testhow well my model predicts the
real-lifespread of information through a Twitter network.

2. APPROACH

The Bass model. The Bass model (Bass, 1969) was originally developed by a marketerto model brand
awareness, butitcan also be applied more generally to the diffusion of information. The modelis based
on the assumption that people get theirinformation fromtwo sources, advertising and word of mouth.

Formulation. The Bass model describes the fractional change in apopulation’s awareness of a piece of
information by:

F'(t)

1_F(t)=p+qF(t)



where F(t) isthe aware fraction of the population asafunction of time, pis the advertising coefficient,
and g isthe word-of-mouth coefficient.

We can express F(t) directly as:
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The Bass model can be interpreted a hazard-rate model, where P(t)=p + gF(t) is the conditional
probability thata person will become aware of information attime tgiven that they are not yetaware.

An agent-based Bass model. We can formulate an agent-based modelinspired by the classical Bass
model. First, we discretizethe problem, giving agents an opportunity to become aware of the
information (given thatthey are notyet aware) at each time step. Then, instead of takinga
deterministictime aggregate at each time step, we update each agent’s state probabilistically. Finally,
we consider agents within the context of asocial network: instead of allowing each agentto be
influenced by the entire population, itisinfluenced only by its direct neighbors.

Information diffusion through a Twitter network. In my project, limplementan agent-based Bass
model that simulates the diffusion of information through a Twitter network. (Twitterisaservice which
allows its usersto post short messages and list which otherusers they read, or “follow”.) Inthis case,
each agentcorrespondsto a Twitteruser. A word-of-mouth transfer of information represents the
exchange of informationin the form of a Twitter post. The effect of advertising is any external transfer
of information, thatis, information obtained from a source otherthan Twitter. We define a Twitteruser
to be aware when he or she posts a message that conveys the relevant piece of information to
followers.

Network formation. The agent-based Bass model assumes agents are arrangedin some fixed, known
network. Formally, the networkisadirected graph with agentsas itsnodes. Anagent’s neighborsare
those who connectto it. The network structure formy simulations willbe derived from real-world

Twitterdata. Adirected edge fromagentito agentj denotesthatagentj “follows” agention Twitter.

The spread of information through the network. The agent-based Bass modelisadiscrete-time model
inwhich each agent has one of two states at each time stept: (1) unaware or (2) aware. At the
beginning of the simulation, all agents are unaware. Ateachtime step, an unaware agenthasan
opportunity to become aware. Its state changes with P, the probability thatit becomesaware due to
advertising or due toword of mouth. The probability thatan agent becomes aware due to word of
mouthincreases as a function of the fraction of its neighbors who became aware in previous time steps.
Once an agentbecomes aware, it remains aware forthe rest of the simulation.

Probability that an agent becomes aware. At each iteration, an unaware agentibecomesaware with
probability

Pi(t) = p At+q At [n(t) /m]—(p q At? [ni(t) /m]),



where m;is the number of neighbors of agent i, ni(t) isthe number of neighbors of agentithat became
aware before time t;and p and g are parameters which indicate the effectiveness of advertisingand
word of mouth perunitof time, respectively. The firsttermisthe probability thatan agentbecomes
aware due to advertising, the second term thatit becomes aware due toword of mouth, and the third
termthat it becomesaware due to both.

3. IMPLEMENTATION

Motivation. In their paper, “Agent-Based Models of Information Diffusion”, Auzolleand Herrmann
(2012) describe theirimplementation of an agent-based diffusion simulation. The codebase, writtenin
NetlLogo (Tisue and Wilensky, 2004), a programming language used to develop agent-based simulations,
turned out not to be fast enough to handle large networks. The goal of the current projectis to code
this model in MATLAB (The MathWorks Inc., 2010) with the hope of producing a faster, more memory
efficientimplementation. limplemented two versions of this model. First, | codeda basic
implementation to use as a reference. Then, limplemented the model usingamore efficient updating
rule and taking advantage of sparse data structures. | call this second implementation the neighbor-set
implementation.

Basic implementation. The basicimplementation depends on the use of an adjacency matrix to store
relationships between agents and to record agents’ awareness statuses. A straightforward algorithmic
description of the basic simulation is as follows:

Arbitrarily identify the N agents withtheset 1, ..., N. Let D denote the |D| X2 matrix listing all (directed)

edges of the graph as ordered pairs of nodes.

INPUT: matrix D, parameterspand q.

1. Keeptrack of the state of the agentsin a length-N bitvectorinitialized to all zeros.
2. Create an adjacency matrix Asuch that A(i,j) =1if (i,j) isadirected edge in Dand 0 otherwise.
3. Create anotheradjacency matrix Bto track aware neighbors. B(i,j)=1if (i,j)isadirected edgein
D and agenti isaware.
4, Ateachtimestep, foreach agent:
I.  Checkthe bit vectorto determine if the agentisalready aware. Ifso, skipit.
Il.  Make the agentnewly aware with probability p.

lll.  Look upthe agent’s upstream neighborsinA. Look up the agent’s aware upstream
neighborsinB. Determine whatfraction of the upstream neighbors are aware. Make
the agent newly aware with probability g times that fraction.

IV.  Onceallagentshave been processed, record the newly aware ones asaware inthe bit
vector.

5. Stoponce all agents have become aware, oraftera maximum number of iterations.



OUTPUT: complete history of the bitvector.

Neighbor-setimplementation. Thisimplementation benefits from a more efficient updating rule and
from custom sparse data structures tailored to this new updatingrule. The resultisafasterrun time
and more efficient use of memory. When run with the same random numbers, the basic
implementation and the neighbor-setimplementation produce identical results.

A more efficientupdatingrule. In orderto decide whetherto change the status of an unaware node,
the node’s number of unaware upstream nodes (its “awareness number”) must be computed. The basic
implementation effectivelyrecomputes each node’s awareness number from scratch at every time step.
But because changesinthe awareness numberare entirely due to nodes which have just become
aware, such a computation seems wasteful. This suggests a possibleimprovement: a preliminary pass
throughjustthe newly-aware nodes which updates just theirdownstream nodes. Afterthis preliminary
step, we can proceed asin the basicimplementation, but without needing to recompute awareness
numbers.

Representing adjacency efficiently. Our new updating procedure suggests afurther possible
improvement: replacing the network’s adjacency matrix with a sparse data structure which reflects the
structure of the updatingrule. Information aboutadjacency can be stored by rewriting the adjacency
relationasa function f: ¥V > 2" whichreturnsa node’s downstream nodes. Concretely, this function
ismost naturally implemented as a vector of length | D| concatenatingthe output sets of f together
with a list of pointers marking the start of each set. Note that the coding of this function can also be
thoughtofas an |D| x 2 ordered list of the coordinates of the nonzero entriesin the original adjacency
matrix.

Comparing the three implementations. Table 1givesthe time and space requirementsforthe NetLogo
(Auzolle and Herrmann, 2012), basic, and neighbor-setimplementations of the agent-based Bass model
for two datasets. The second column lists the time required for asingle run of the simulation. Column
three liststhe total time required to run the simulation 100 times and then compute confidence
intervals. Datalisted forthe NetLogoimplementationis an estimate asthe programis run intwo stages.
Moreover six out of the tentimesit was executed, this program was stopped afterrunningforlonger
than an hour. The bestruntime (out of ten) was taken forthe NetLogo implementation foreach
dataset.

Table 1: Time and Space Efficiency Model Implementations

Bin Laden Dataset(7.27 MB, 4.7K nodes, 477K edges)
Memory Sim. Time Total Time
NetLogo Implementation -- ~ 3 min. --
Basic Implementation 506.73 MB 12.92 sec. 21.0 min.
Neighbor-Set Implementation 18.55 MB 0.74 sec. 1.2 min.




Irene Dataset (0.70 MB, 1.1K nodes, 46K edges)
Memory Sim. Time Total Time
NetLogo Implementation -- ~ 10 sec. --
Basic Implementation 30.31 MB 0.73 sec. 1.2 min.
Neighbor-Set Implementation 1.85 MB 0.06 sec. 6.5 sec

Increasing code efficiency furtherthrough parallelization. The current version of my neighbor-set
implementation runs with asingle thread of execution. Inthe springsemester, it will be parallelized so
that multiple simulations run simultaneously. Each of the runs will be logged and the complete set of
data will then be analysed.

4. SIMULATION RESULTS
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Figure 1: Plots of Simulation Results

The plots above show the number of agents aware at each time step of the simulation. Figure 1lashows
the trajectories fortwo simulation executions; figure 1b shows trajectories for 200 executions. Since the
simulationis stochastic, asingle run provides, at each time step, only asample of the network’s true
behavior—the trajectories are close but not the same.

5. STATISTICAL ANALYSIS

Resultsasrandomvariables. Asillustratedin the plots above, at each time step, ouralgorithm produces
not a number butrather a random variable. We would like to know as much as possible about the
underlying distribution of the network’s behavior at each fixed time. The mostimportant single number
we could calculate for each time-indexed underlying distribution would be its mean. We could learn
about this mean by computing a sample mean, then surroundingit with a confidence interval within



which we expectthe true meanto lie. Anotherwaywe mightgaininsightaboutthe underlying
distributionis by constructing predictionintervals within which we think our next sampleislikely tofall.

Confidence intervals for the distribution of means. We can summarize how confident we are thatan
underlying distribution’s true mean g lies within agiven range by introducing the notion of a confidence
interval. Every run of the simulation gives usasample value x;at each time step. If we run the
simulation numerous times, we obtain many sample values from which we can compute asample mean
X.

Let x4, ..., x, bearandom sample from an arbitrary distribution with an unknown mean pzanda
standard deviation ¢ > 0. A 95% confidence interval for the unknown mean gisan interval with
randomendpointsu X andv X suchthatP p €(u X ,v X ) =0.95.

+t . . . .
letx = 27" heour sample mean at a giventime step for n= 200 runs of the simulation. The
n

x—

Central Limit Theorem statesthatthe randomvariable W = T; has the normal distributionN' 0,1

inthe limitas n = o. In otherwords, the distribution of a mean tendsto be normal, even whenthe
distribution from which the meanis computedis decidedly non-normal.

Since the standard deviation ¢ of our distribution is unknown, we can approximate it with the sample

. 1 . . o g
variance 5% = — %, (x; —x)? giventhatour underlyingdistributionis not ‘significantly’ skewed or
contains ‘too many’ outliers. We make thisassumptionand examineitinalatersection.

Because the Central Limit Theorem says that the sample meanis approximately normally distributed, for
an unknown mean p:

(1) W = :'”

21

will be approximately standard normal. So we have
(2) P 196< W <196 =0.95

Substituting (1) into (2) and solving for p we have:

P x —1.96%< u < x+1.%iE =0.95.

The rearranged bounds are known as a 95% confidence interval for the mean.



95% Confidence Intervals for the Mean
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Figure 2: Examining Confidence Intervals Surrounding the Simulation Mean at Each Time Step

Confidence intervals about the mean are so narrow, itis difficult tosee them on the plot. We are 95%
confidentthe true meanliesinthissmallinterval.

Predictionintervals. We can use our past observationsto predictthe outcome if we were torun the
simulationone more time. Letx,, ..., X, , X,+4 be a random sample from a with an unknown mean and
an unknown standard deviation. A 95% predictioninterval for x,,4, isan interval withrandom
endpointsu X andv X suchthatP x,4; € (@ X ,v X ) =0.95.

Nonparametric predictionintervals for unknown distributions. If we are samplingfroman unknown
distribution, we mighttry using quantilestoformour predictionintervals. LetF x = P X <x = p
be the cumulative distribution function forarandomvariable X. The quantile function @(p) isthe
inverse distributionfunction F~1 p =inf x € R p < F(x) ,definedsoitholdsforboth continuous
and discrete distributions. Simply put, the quantile function gives the value of arandomvariable given
the probability of obtaining at most that value.



Monparametric Prediction Intervals
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Figure 3: Nonparametric Prediction Intervals at Each Time Step of Simulation

Parametric predictionintervals for unknown distributions. Let’sassume thatthe simulationresultsare
normally distributed at each time step. Thisassumption allows us to analyze them using parametric
predictionintervals.

Letxq, ..., Xp , Xp+1bea randomsample froma normal distribution with an unknown meanand an

- . &1+t
unknown standard deviation. Again, letx = =——" be the sample meanand
n
§S?=—= ™ (x;—x)?beth le vari
== i=,(x; — x)° bethe sample variance.

To obtaina predictioninterval for x,,44, we first use the fact that the randomvariable T = T nh

s 1+
n

a t distribution withn — 1 degrees of freedom with a probability density function given by

frt= % (1+ Z—:)‘(t‘“)/z, where I'is Gamma functionand v = n — 1 is the numberof
degrees of freedom.

Since we know the distribution of T, we can compute £, ¢ the 2.5" percentile of the t distribution with
n — 1 degreesof freedom such that:

We solve the inequality for x,,44:



P x—t2|55 1+£< xn+1<x +t2.55 ].‘l‘i =0.95
n n

The rearranged bounds are known as a 95% parametricprediction intervalfor the mean.

Parametric Prediction Intervals
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Figure 4: Parametric Prediction Intervals at Each Time Step of Simulation

Didthe assumption that ourresults at each time step come from a normal distribution significantly
change the predictionintervals? Figure 5shows that that the nonparametricand the parametric
predictionintervals nearly overlap —in this case, the normality assumption didn’t produce significantly
differentresults.



Comparison of Prediction Intervals
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Figure 5: From Nonparametric to Parametric Prediction Intervals:
Did our assumption of normality significantly change the bounds?

Challenging the assumptions. In orderto use confidence intervals and parametric predictionintervals
to analyze the simulation results, several assumptions were made about the underlying distributions at
each time step. Computing prediction intervals, required the assumption that our sample of results
comesfroma normal distribution. Computing confidence intervals, requires that the distributionis not
significantly skewed and does not contain too many outliers. Towhatextentare these assumptions
justified? We use quantile-quantile plots and perform the Kolmogorov-Smirnov goodness-of-fit test to
explore the answer.

Quantile-quantile plots. A g-q plot compares the shapes of two distributions by plotting their quantiles
against each other. This method is often used to determineif the underlying distribution of a data
sample matches aparticulartheoretical distribution. We use g-q plotsfortwo purposes: (1) to
graphically represent how closely the underlying distributionin fact resembles a normal distribution,
and (2) to test how skewed the underlying distribution is and whetherit has outliers.

Formally, let @, (p) and @, (p) be quantile functions fortwo distributions respectively. Aq-qplotisa
parametriccurve with coordinates (Q4(p), @-(p)) and quantile intervals as the parameter. All g-qplots
were generated with MATLAB’s ‘qgplot’ command.
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Figure 6: Quantile-Quantile Plots

Figure 6 showsthat most pointslie roughly onthe line = x , suggestingthat the distributions of the
simulation results at most time steps are close to normal. There are a few pointsthatlie off the line,
suggesting outliersin the data. Almost all slopes are very close to 1, indicating that the datais not
significantly skewed. Atrajectory withthe leftend below the line and rightend above the line indicates
longertails at the ends of the distributions at some time ste ps. A stair-like pattern at the latertime-steps
reflectsthe discrete nature of the data.

Kolmogorov-Smirnov Test. Computes L*norm between cdf of normal distribution and underlying
distribution at each time step.
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Figure 7: Kolmogorov-Smirnov Statistic at Each Time Step

6. VALIDATION
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Figure 8: Mutual Validation among Three Implementations

Let’sfocus on the case of a fully-connected network K. Let x(t) denote the fraction of agents who
are aware at time £. If the probability that advertising makes an agentaware is p and the
independent probability that word of mouth makes the agentaware is gx, then, by the Inclusive-
Exclusive Principle, the probability thatan agent becomes aware is:

at =p+gxt —pgx(t).
Estimatingthe fraction of agents who become aware overa single time step as the probability of

becomingaware a t timesthe fraction(1 — x ¢ ) of unaware agents, we arrive atthe recurrence
relation:



Xpt1=Xptay 1- Xp = Xpt [p+ GXn _pqxn] [1 _xn] ’

with the initial condition x3 = 0.
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Figure 9: The solution to the recurrence indeed tracks the output of the simulation,
suggesting that the implementation is correct.

Our simulation assumes an advertising probability of p and a word-of-mouth probability of gx overa
time step of 1 hour. If we wishto rework the simulation torun oversome smallertime step At, we
must reimagine pand g as probabilities per hourandinstead write out advertising probability as

p Atand word-of-mouth probability as q At x. Inserting At thisway into the previousrecurrence,

we obtain:
Xpa1 = Xp+ [PAt + gAtx,, — pAtgAtx,][1—x,],

againstartingwith x5 = 0.
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Figure 10: The solutions to the recurrence track our simulation over a range of step sizes.

Distance from Bass Model vs. Step Size (p=0.1,g=0.1)
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The recurrence schemes are globally first-order approximations to the solution of the original logistic

ODE (the Bass model).

7. PROJECT SCHEDULE AND MILESTONES

| have completed the following components of my project:
October: Develop basicsimulation code. Develop code for statistical analysis of results.

November: Validate simulation code by checking corner cases, sampled cases, and by relative testing.

Validate code against analytical model.



December: Validate simulation against existing NetLogo implementation. Prepare mid-year
presentationandreport.

January: Investigate efficiency improvements to code. Incorporate sparse datastructures.

8. DELIVERABLES
| have completed all deliverables promised in my proposal for the end of the semester:

the code formy simulation
the code for my statistical analysis

3. aplotshowingat eachtime step the meanand both ends of a 95 percent confidence
interval based on data collected from numerous runs of the simulation

4. acomparisonof my code’srunningtime againstthat of the existing NetLogo
implementation
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